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ALGORITHMIC PROBLEMS FOR COMMUTATIVE SEMIGROUPS
UDC: 519.40
M. A, TAICLIN®

1. Algorithms for the solution of various problems in the theory of commutative semigroups have
been given by A. I. Mal ‘cev [1], Ceitin, Birjukov [2-5], Emelicev [6], Halezov [7]. In the papers
[8,9], the author described a universal algorithm which solves any problem which can be given in the
language of the first-order predicate calculus with a certain signature. For a more precise formulation
of these results, with every commutative semigroup L (¥, B), given by a finite set of generators ¥ and
a set of defining relations B, we associate the signature o(¥) = (a, G,|a € U >, where, for a € Y,
G, is a symbol for a singulary predicate. We shall say that a certain algorithm solves problem A if,
with respect to %, B and any closed formula @ of the first-order predicate calculus with signature
o(¥), this algorithm determines whether the formula ® is true in the semigroup L (¥, B) in the case
where, for each a € Y, the predicate G,(x) is interpreted in L (¥, B) as “x is equal to some natural
multiple of a’’. The basic content of papers [8:9] is a description of an algotithm solving problem A.

The indicated algorithm consists in deriving successively the consequences of a certain axiom
system until the formula ® or the formula |® is derived. A deficiency in papers [8:9] was the use
of model-theoretic arguments for the completeness proof of the axiom system being used. This dis-
tinguished the description of the universal algorithm from the constructive descriptions of the algorithms
for the solution of various problems in the papers cited above.

The present note describes another algorithm which also solves problem A. The description
provided here is constructive and simpler.. Of independent interest is the following result of this note.
If by elements of a commutative semigroup with n generators we understand equivalence classes given
on n-tuples of natural numbers, then the corresponding equivalence relation is always defined on the
natural numbers by some formula of the first order predicate calculus not containing any extra-logical
symbols other than the symbol for the addition operation.

2. Ve shall, in addition, employ without explanation the terminology introduced in section 1 of
§1 of the survey [10]. Assume that an algebraic system W of signature ¢ has a decidable theory.
Assume that €(x,, +++, x5,y ,y,) is a formula of signature ¢, not containing free variables
different from %, <, %Xy, ¥{»**+,¥;. Let arelation ~, defined in the system o, R TR
(y>+++»yy) ifand only if €(eq, v+, %y ¥4, 42+, ys) is true in MW, be a congruence relation in o,
Then the factor system W‘/w also has a decidable theory. If the relation ~ and the formula
€CGyyeov x5 ¥15+ -5 y%) are connected by the condition considered above, then we shall say that
the relation ~ is elementary in M and that the formula €(x,, -+, %4, ¥, -, y;) defines the
relation ~.

It is well known that the system %= <N, +), where N=1{0, 1,2, :++} is the set of natural
numbers and + is the usual addition operation on natural numbers, has a decidable theory. Hence,

every factor system of the system R* with respect to an elementary equivalence relation also has a

* Editor’s note. The present translation incorporates suggestions made by the author.
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decidable theory.

Every semigroup L (¥, B) can be considered as a factor semigroup of the semigroup mk, where k
is the number of elements of ¥. For a solution of problem A it suffices, therefore, to note that this
factor semigroup is obtained by factorization of N with respect to an elementary equivalence relation
and that a formula defining this equivalence relation can be effectively constructed from ¥ and B.

In the case where L (¥, B) is a semigroup with cancellation, this is a trivial observation. In fact,

let_?l={al, "',ak}, %={Ci, di), i = 1, ""q}y where

k k
@), . ’ @, . i i
C; = Z a; )dj, d; = Z ﬁj )dj, a§l), ;l) &= N.
i=1 j=1

In this case, (6, -+, %)~ {y;, *+, ;) is equivalent to the condition

q
(Aty) . .. (dty) (Azy) . .. (dty) ( /k\ [x + 3 85 (0 — )
i=1 j=1
q
— i+ X e —p)]).

j=1
This condition can, in an obvious way, be presented in the form of the required formula.

3. In this section we shall recall some ‘definitions and results of § 1 of paper [9]. By L®) we
shall denote the free semigroup with the set ¥ of free generators in the class of commutative semi-
groups with zero. We can think of the set L () as the set of all linear forms on the letters
@y, e, ay, where U= fag, s ay}, with natural numbers as coefficients. A semigroup L, B),
given in the class of commutative semigroups with zero, by finite sets of generators Y and defining
relations B, will be considered a factor semigroup of the semigroup L (A). For x € L(W), by x we
shall denote the image of x under the canonical mapping L (¥) — L (¥, $). By M(¥U, B) we shall
denote the semigroup given in the class of commutative semigroups with cancellation and with zero by
finite sets of generators ¥ and defining relations B. Ve treat M (Y, B) also as a factor semigroup of
the semigroup L (). For x € L(Y), by [x] we denote the image of 'x under the canonical mapping
L@ — M, B).

For a € ¥ and f € L(A), we denote by (f), the coefficient of the letter a in the form f. For
f, g € LA), we write f>g if (f)y > (g), forall a € U We write %, CU if U # W and U, isa
subset of the set U. By the symbol ¢ we denote the empty set. By L(¢) we denote the zero semi-
group. If W, CU, we consider the semigroup L (¥,) to be a subsemigroup of the semigroup L (). We.
shall assume that % ¢ L(®). For %A, C U and f € L (W), we denote by U, (f) that form in L(¥ - UA,)
such that (¥, (), = (f); faall a € U-U;. Let g (®B) be the number of relations in B, and let A (B)
be the largest coefficient in these relations. By (¥, B) we denote the form EaG‘JI MEB) (g (B) + 1)
in L ().

Assume ¥, C W By R(U;, B) we denote the set of all x € L(¥- ?Il) such that the inequality
* ¥y 4R (U, B)+7Z holds in LU, B) forall y € L), z € L(W. By MU, B) we denote the set
of maximal elements of R(¥,, B) in the sense of the relation >. By 0, (2, B) we denote the set

(e = LEANY)|(Ty) (y = W(W,8) &y = 7)}.

The sets (YU, $) and W, (U, B) are finite.

We divide the set I, (¥;, B) into reduction classes, assigning x, y € x, (U,, B) to the same
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class if there exist z, u € L (¥,) such that x+z =5+ % in L (%, B). By i (U, B) we denote the
number of reduction classes, and by -sz,l (?Il, B), -0, %2,1'(9[,,(5)(211’ B) all the differeat classes.

For x,y € R, A, ¥), jel1,---,i®, B) and for A; CU;, we denote by MU, A, %, y, B)
the set of all those z € L (U, ~ U;) such that, for all u € L(A;) and v € L(U,), the inequality
xtzFu#y v holds in L(¥, B). By WU,, Aj, x, y, B) we denote the set of maximal elements of
N, Us, x, ¥, B). The set MU, U,, x, y, B) is finite. We recall that:

(1) the sets (U, B), X, A, B), WU, U;, x, y, B) are effectively constructible from U 8B, |
U, 213, %y [9) |

(2) the set !1 (?Il, B) is effectively divisible into reduction classes with respect to U, B, 2[1

%

(3) there exists an effective procedure which, for %, B, ¥, x such that A; C U and
x € LU - 2[1), constructs a finite set ‘B(?ll, x) of defining relations for ?‘[1 such that, for
u, v €L @A), =7 in L(?Il, B(Y,, x) when and only when £+ T=%+7 in L, B) (9

(4) forx, yEL®), x+ A (U, B)=y + A (U, B) in LY, B) if and only if [x]= [y] in MY, B)
(Lemma of Ceitin [7]);

(5) for x € L(¥), either there exists z € L(¥) such that x = £ (W, B) + z in L, B), or there
exists ¥; C ¥ such that U, x) € R, (¥,, B) (9)

(6)for U, Wy x,y €M, ; (U, B), jels, -, iUy, B}, and u € L(¥U,), either there exists

such that ¥, (W) <v [9).
4. Theorem. Let W=1{a,, -+, ar}. The equivalence relation in R*, defined by the condition
that (ag,+++,a3) ~ (B, +++, Bx) when and only when
k k
21 o;8; = Z f:d;
i=1 i=l1
in LW, B), is elementary in M. There exists an effective procedure which constructs from % and B
a formula €U, & a,, Bla € W) defining the relation ~.
The proof is carried out by induction with respect to the number of elements of U. For U with
onie element, it is obvious. Let us suppose that we are able to construct €(¥, B; a,, B;la € W) in
the case where ¥ contains fewer than % elements. Assume that ¥ contains % elements. Let

€' W, B; a,, B,la € U) denote a formula which defines a congruence relation ~_ on N such that the
8t

semigroups M (¥, B) and W‘]ml are isomorphic. 1
For &, c¥, jef1, -++,i¥W;, B}, u,v€E R,. (?Il, ®), we denote by @ (U, u, v) the set of all

those -functions . ¢» which, to each ¥; CU, and to each e € RN, s, u, v, B), associates an ele-

ment ¢(¥U;, e) € A, - A, For ¢ € D(Y,, u, v) we consider the set U(gp) = {p( Uy, &)Uy Uy, e €

NA,, Aj, u, v, B). For a € U(p) we denote by p, the natural number

max{(e),|¥; C U, e € RWA, U, u, v, B), ¢(Us, ) =al. By F¢(u, v, A, ) we denote the conjunction

of all formulas

o = (u)a, Ba = (U)a, Qe = e+ 2.+ 1
forall a € U-Uy, c € ?I(qﬁ), whete z,, a,, @,, B, are symbols for individual variables.
Let
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d= 2 a.a + E (P’a+1)a"

_ = AN a=A(%) ,

From (6) it follows that d =v + d; in L(¥, ®) for some d; € L (¥,). Now, in €U, B(A,, v);
0g, Bala € A,), instead of a, we.put (d;), + z, if a € U(P) and we put a, + (d;), if a € U(p).
We obtain a formula G¢(u, v, *;). By Dd,(u, v, ;) we denote the formula which is obtained if we
prefix to the formula F 4 (u, v, %) & Gy, v, A)) existential quantifiers with respect to -z for all
¢ € U(p). By D(Uu, v) we denote the disjunction of the formulas D¢(u, v, ¥,) for all
¢ € B, u, v).

By ¥ we denote the set of all those functions ¢ which, to each ¥, C % and to each
¢ € R(Y,, B), associates an element (W, c) € A - UA;. For y € ¥ we consider the set ?I¢ =
@, N, U, c € R, B). For a € QI¢, we denote by 1, the patural number
max {(c) |%;, CY c € YU, B), y( Uy, ¢)=al. By H,(a,, z.|c € ?I\ll)we denote the conjunction of
all formulas a, =v, + 2.+ 1 for all ¢ € ?L,, , where o, z, are symbols for individual variables.

Let

f'b: Z (’Va+1)a-
=4

From (5) it follows that f = A (¥, B) + gy for some gy € L(U). By B(y, r) we denote the formula
which is obtained if, in €" (¥, B; a,, B, | a € U) instead of o, we put z, + gy) for c€YUy,
instead of a, we put o, + (g), forall a € U~U, instead of By we put y4 + (g, forall d € ¥,
and instead of B, we put S, + (g;),; for all @ € U~ U,. By E (i, 7) we denote the formula which is
obtained if, in the conjunction

Hw(ac, zclc e aw) &H-;(ﬂd, yd|dEﬁ'¢) &B(\p, T)

we prefix existeatial quantifiers with respect to all z, and y; for ¢ € Ry, and d € U,.

From (4), (5), (6) it follows that, as ‘€(¥, B; a,, B,z € ), one can take the disjunction of all
formulas E (), ), D(¥,, u, v) for all ¢, r€ Y, all %, ¥ all jeis, -, iU, B) and all
u, v € “2'1'(2[1, B)o
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